La variante delta es más transmisible, genera mayor riesgo de hospitalización y provoca síntomas diferentes de otras variantes, señalaron especialistas, la cual, fue detectada en India en octubre de 2020 y hasta ahora ha llegado al menos a 96 países.
Datos preliminares muestran que es más transmisible que otras variantes, lo que conlleva un mayor riesgo de hospitalización y reinfección, y genera un cuadro de síntomas ligeramente diferentes (más dolor de cabeza y menos tos, por ejemplo), refiere una nota de BBC.
Se estima que la variante delta es entre 30 y 60 por ciento más transmisible que otras variantes del coronavirus.
Al menos en Reino Unido, ya se ha vuelto dominante y representa el 90 por ciento de los casos nuevos.
El bioinformático Tulio de Oliveira, director del laboratorio Krisp de la Universidad KwaZulu-Natal (Sudáfrica), enumeró las principales características de la variante delta.
1. Invasión celular más eficiente
Una parte importante de estos cambios "ventajosos" se han producido en la forma en que el virus se conecta a nuestras células.
Más específicamente, el vínculo entre la espiga del virus (también conocida como proteína S) y el receptor ACE2, una enzima que se encuentra en la superficie de nuestras células.
Esta espiga actúa como si fuera la llave que abre la cerradura de nuestra célula y permite la invasión del coronavirus.
Una vez dentro, utiliza la estructura celular para multiplicarse.
En el caso de la variante delta, existen dos mutaciones relevantes en la espiga, que se conocen por los códigos L452R y T478K. En la primera letra es el tipo de aminoácido que existía antes del cambio (L, símbolo de lisina), el número corresponde a la ubicación (452º de 1273 aminoácidos) y la última letra es el aminoácido que entró en su lugar (R, símbolo de arginina).
En términos generales, un virus es un ácido nucleico (ADN o ARN) rodeado por conjuntos de aminoácidos (proteínas).
La capa externa sirve para adherirse e invadir la célula humana, por ejemplo, y la capa interna sirve como un manual de instrucciones que se utilizará para producir nuevos virus dentro de la célula invadida.
2. Activación más eficiente y teoría de la creación de coronavirus en el laboratorio
Para invadir la célula humana, no es suficiente que un virus encuentre una puerta de entrada y se adhiera a ella: primero debe activarse. En el caso de Sars-CoV-2, esta activación ocurre a través de una enzima en el cuerpo humano (llamada furina) que corta la espiga del coronavirus en dos: S1 y S2.
Después de este corte, llamado clivaje, una parte de la espiga (S1) se adhiere a la célula humana y la otra (S2) fusiona su membrana con la membrana de la célula humana, permitiendo la inserción de material genético e iniciando la producción de más virus.
Al cortar la espiga, la enzima hace que se abra y revele secuencias genéticas ocultas que lo ayudan a unirse más estrechamente a las células del tracto respiratorio humano, por ejemplo.
Una mutación cercana a esta ubicación puede alterar aún más este comportamiento.
Este es el caso de la variante delta, que porta una mutación (P681R) en esa región.
3. Escapar parcialmente de anticuerpos y vacunas
Fernando Spilki, profesor de la Universidad Feevale y coordinador de la Red Corona-Ômica, en el Ministerio de Ciencia, Tecnología e Innovación de Brasil, utiliza la analogía de las piezas de Lego para explicar el papel de las mutaciones en los eventuales escapes de las variantes del sistema inmunológico y las vacunas.
Al aprender a defenderse, las células de defensa, como los anticuerpos neutralizantes, utilizan partes de los invasores para saber cómo identificarlos y combatirlos.
Cuando se producen mutaciones en el coronavirus, por ejemplo, es como si las partes de los anticuerpos ya no encajaran bien con las del invasor, lo que facilita el escape. Por lo tanto, el virus puede al mismo tiempo mutar para acoplarse de manera más eficiente a la puerta de entrada de la célula y escapar parcialmente del encaje con anticuerpos neutralizantes.
Para Spilki, "es como si el virus creara vías para escapar del sistema inmunológico y desarrollara formas más efectivas de transmisión".
Explica que todos estos cambios fueron "previstos" en experimentos de laboratorio, que son capaces de analizar la influencia de cada intercambio, inserción o supresión de estas pequeñas piezas sobre el comportamiento del coronavirus.
En el caso de la variante delta, las mutaciones vinculadas a ella son la sustitución T19R y la deleción 157-158del.
Volviendo a la analogía de las piezas de Lego, la sustitución del aminoácido T (treonina) por el R (arginina) en la posición 19 dificulta que el sistema de defensa del cuerpo identifique al invasor para combatirlo.
Lo mismo ocurre con la "falta" de aminoácidos en las posiciones 157 y 158.
En general, las proteínas tienen dos extremos, uno llamado N-terminal y el otro C-terminal.
En el caso de los coronavirus, la región N-terminal (DTN) se considera más antigénica o inmunogénica.
Es decir, el sistema de defensa humano "percibe" mejor y produce más anticuerpos en su contra.
La espiga (proteína S) es la más antigénica de ellas, por lo que generalmente se producen vacunas dirigidas a esta estructura para enseñar al sistema de defensa del cuerpo a identificarla para combatir el coronavirus en su conjunto.
Aquí es donde entra en juego la mutación como una forma de obstaculizar la lucha contra el coronavirus.
Los cambios (deleciones y sustituciones) en la estructura de la variante delta en un área antigénica (DTN) dificultan la actuación del sistema de defensa del organismo.
Ninguna de estas mutaciones es exclusiva de una u otra variante. Lo que las vuelve preocupantes es su conjunto.